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Abstract. Parallel scripting is a loosely-coupled programming model in which 
applications are composed of highly parallel scripts of program invocations that 
process and exchange data via files. We characterize here the applications that can 
benefit from parallel scripting on petascale-class machines, describe the mechanisms 
that make this feasible on such systems, and present results achieved with parallel 
scripts on currently available petascale computers. 

1.  The parallel scripting paradigm 
John Ousterhout describes scripting as higher-level programming for the 21st Century[3]. 
Scripting has revolutionized application development on the desktop and server, accelerating 
and simplifying programming by focusing on the composition of programs to form more 
powerful applications. Understanding how to scale scripting to 21st century computers should 
be among the priorities for researchers of next generation parallel programming models. Might 
scripting not provide the same benefits for extreme-scale computers? 

We believe that the answer to this question is yes. We introduce the concept and 
implementation of parallel scripting, and describe what becomes possible when simple scripts 
turn “ordinary” scientific programs into petascale applications running on 100,000 cores and 
beyond. Scripting languages allow users to assemble sophisticated application logic quickly by 
composing existing codes. In parallel scripting, users apply parallel composition constructs to 
existing sequential or parallel programs. Using this approach, they can quickly develop highly 
parallel applications that can be run efficiently on a 16-core workstation, a 16,000-core cluster, 
or a 160K-core petascale system. 

Parallel scripting is not a substitute for existing tightly coupled programming models such 
as MPI. Rather, it is an alternative (and higher-level) path to massive parallelism, a path 
particularly suitable for increasingly feasible and important problem-solving methods such as 
the use of parameters sweeps and ensemble studies for exploring sensitivity to parametric, 
structural, and initial condition uncertainty. The availability of extreme-scale computers makes 
such methods feasible and attractive, even in the case of complex computations. Parallel 
scripting allows users to apply these methods while leveraging the vast value embodied in 
modern application codes—both serial and parallel—that empower the scientific, engineering, 
and commercial computing of today and the foreseeable future. 



 
 
 
 
 
 

We have been exploring such “many task” computing models[6] for several years, from the 
perspective of both technologies and applications. On the technology front, we have explored, 
in particular, a dataflow-driven parallel programming model that treats application programs as 
functions, and their datasets as structured objects mapped to a simple abstract data model. We 
have incorporated this model in a parallel scripting language, Swift, and implemented that 
language on large parallel computers, including a 160K-core Blue Gene/P and a 62K-core Sun 
Constellation. Swift programs may define hundreds of thousands (and soon millions) of tasks 
that read and write an even greater number of files. We have developed task and data 
management methods that can scale to extremely high dispatch rates and data volumes, and 
used them to scale applications to up to 160K cores, with high efficiency and fault tolerance. 

2.  Software architecture for petascale parallel scripting 
Our approach to high-performance parallel 
scripting requires three layers, which from the 
bottom up are: (1) a POSIX environment in 
which to execute the individual application 
tasks of a script; (2) a means to allocate 
compute node resources, hold them for  long 
and varying periods of time (typically hours 
rather than seconds) while rapidly scheduling 
small independent tasks on the compute nodes 
– even tasks of very short duration (down to 
fractions of a second, but typically many 
seconds or minutes); and (3) a language in 
which to abstractly express scripts of highly 

parallel application invocations, their data accesses,  and the data interchange between them. 
Modern concepts of scripting depend on POSIX system services such as fork() and exec() in 

order to execute application programs from the script, and this require an operating system that 
supports these or similar capabilities – notably, the ability to launch a new application program 
and wait for it to complete. On the BG/P, the native IBM compute node kernel lacks these 
features, and we provide them instead through the ZeptoOS compute node kernel[4], which 
implements these features in a POSIX-compliant manner. On the Ranger Constellation system, 
we use the native compute node operating system, which provides complete POSIX support. 

3.  The Falkon resource provisioner and lightweight scheduler 
The compute node resources of petascale computing systems are typically managed by 
traditional batch schedulers, which are designed and configured with policies for running large 

parallel jobs that execute the same 
application program on all compute 
nodes allocated to the job, and 
which run for extended periods of 
time. Parallel scripting, however, 
requires that many application 
programs, each with an 
independent set of arguments and 
different sets of input and output 
files, and having likely short and 
often widely varying execution 
times, be executable on any 
compute node. This far more 
dynamic scheduling model 

 
Figure 1: Architecture for petascale scripting 

 
Figure 2: Falkon Provisioning and Scheduling System 



 
 
 
 
 
 
demands a multi-level scheduling approach, which we have implemented in a component 
called Falkon, a Fast and Light-weight tasK executiON framework[4]. 

Falkon allocates nodes of a compute resource in large quantities, using the native batch 
scheduler of the system, and runs a persistent task execution agent on each compute core that 
rapidly executes arbitrary and independent POSIX processes on the allocated nodes. Falkon 
consists of several components, shown in Figure 2: (1) a compute node agent that executes one 
task at a time on a compute node core; (2) a service that maintains a queue of jobs for a set of 
compute node resources, and which rapidly selects the next job to run on a FIFO basis; and (3) 
a load-balancing client that evenly distributes work to the services 

Using Falkon, we have been able to meet performance requirements necessary for petascale 
scripting. Measurements of Falkon performance[4] indicate it can: 

• execute over 3,000 tasks per second on the BG/P; 
• launch, execute, and terminate 160K tasks on the BG/P at 160K-core scale in under 

one minute; 
• execute workloads of 913K science tasks on 116K BG/P cores in 2 hours, totalling 

21.4 CPU years at 99.7% efficiency and 99.6% utilization (Figure 3); and  
• execute one billion trivial tasks in 18 hours in multicore stress tests. 

Users utilize Falkon by creating simple 
scripts that contain a list of tasks to execute, 
with arguments. Tasks are executed with 
FIFO scheduling and with maximum 
parallelism. Since tasks are sent to available 
agents in the order that they appear in the 
Falkon input script, users can sort tasks 
“longest first” when task duration can be 
estimated, thus achieving optimal utilization 
of a block of compute nodes. Falkon 
functionality has been packaged as a Swift 
“execution provider” to enable higher level 
programming (described in the next section). 
It has also been implemented as a newer Swift 

execution provider, which has the additional capability of allocating multiple “time-space” 
blocks of varying number of cores and wall-time duration, to best fit the current task demand. 

4.  The Swift parallel scripting language 
Swift is a scripting language that makes it easy for a user to specify and run application 
programs in parallel, and to specify the data passing and dependencies between different 
application invocations, as well as the structure of the data (typically in terms of files and 
directories). It provides run time support that automates data management and enables the same 
Swift script to run on multi-core workstations, local clusters, remote grids, cloud resources, and 
petascale supercomputers. It is common to write Swift applications in three layers: a top layer 
which specifies the workflow, a middle layer of interface code to adapt specific applications, 
and the lowest layer, which defines the interfaces of the applications themselves. Studies on 
early versions of Swift have shown that the amount of code needed to express applications in 
this form is substantially lower than by ad hoc scripting in “shell scripts” [9]  

Swift also provides a provenance recording mechanism that enables users to log how each 
data item was produced, query that knowledge base to locate data and methods, and retrieve the 
history of an object for validation, sharing, or reproduction of computational results. 

To show the power of the Swift language, here is a fragment of Swift code to perform 
protein-folding simulations using an application called “ItFix”[1]. This simple code fragment, 

 
Figure 3: Falkon performance (DOCK application) 



 
 
 
 
 
 

given ten protein sequences, nsim=1000, two 
starting temperatures and five update 
intervals, will, in each of three (maxrounds) 
rounds of prediction, execute 10 x 1000 x 2 x 
5 = 100,000 simulations. ItFix scripts been 
executed on up to 32,000 cores on the 

Argonne BG/P. Similar code can sweep across any combination of ItFix parameters. This 
abstract script runs without change on multiple TeraGrid clusters including the 62K-core 
supercomputer “Ranger”. 

The Swift data model provides the ability to describe nested on-disk directories as simple 
structures and arrays. These datasets are transparently sent to remote and parallel Swift 
procedures on various platforms. An operation called “mapping” translates between the simple 
abstract data model of Swift and the potentially messy, complex model of real-world directory 
structures and file naming and structuring conventions. 

Swift has a C-like syntax, but many of the semantic aspects of a “functional” programming 
language. Procedures are expressed as functions, which are permitted to return multiple values; 
statements are executed in data-dependency order; variables (including array elements and 
structure members) are single-assignment, which makes it significantly simpler for Swift to 
automatically execute independent operations in parallel. Application programs are abstracted 
as functions, whose arguments and results are files and file-structured datasets. Layering on the 
ability to represent application programs as procedures, the user can define compound 
procedures to create libraries of higher-level processes that capture the essential protocols of an 
application domain’s data preparation and analysis procedures. 

Users interact with Swift at many levels. Scientific programmers create Swift libraries that 
encapsulate the execution of scientific applications, data preparation, and analysis methods. 
These libraries provide a stable base of functionality specific to a user community. Higher-level 
users write simple scripts using these libraries to perform large-scale computing tasks. The 
highest-level Swift users will not need to program at all: they will invoke their scripts and view 
their results through web interfaces. 

5.  Example applications 
Applications to which we 
have applied  large-scale 
parallel scripting [1][2][7][8] are 
listed in Table 1. Each is 
capable of consuming a large 
fraction, or even all, of a 
petascale computer. All 
involve doing many tasks at 
once, with often quite 
substantial amounts of 
communication both within 
each task and among tasks. 

6.  Conclusion 
Our experience in applying Swift indicates that it enables the productive programming 

paradigm of knitting together existing application programs using a functional model to rapidly 
and productively compose new, higher level applications that can efficiently use the parallel 
resources of a petascale system.  We are currently developing enhancements that apply 
“collective” data management techniques[11] to efficiently move data in and out of applications 

foreach prot in protein { 
  foreach sT in startT { 
    foreach tUp in tUpdate { 
      ItFix(prot, nsim, maxrounds, sT, tUp); 
    } 
  } 
} 

 
 

Table 1: Parallel Scripting Applications 

 
Legend:  E: evaluated, D: in development, O: in some degree of operational use 



 
 
 
 
 
 
in a way that leverages the interconnect and filesystem hardware of petascale systems. We 
believe that, when complete, the parallel scripting model will play an indispensible role in the 
extreme-scale programming tool chest. 
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